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Abstract Failures in the optical layer might impact the quality of supported services. We 
experimentally characterize several failure causes and propose an effective machine learning-based 
algorithm to localize and identify the most probable cause of failure impacting a given service. 

Introduction 
Service layer connections are usually set up on 
virtual network topologies, where virtual links 
(vlinks) are supported by lightpaths in the optical 
layer. Thus, errors in lightpaths translate in 
errors in those connections that might cause 
packet losses and retransmissions and lead to 
unacceptable Quality of Service (QoS). Physical 
layer monitoring is key to verify the fulfilment of 
service level agreements (SLA)1 and, in case of 
faults or degradations, to localize the failed 
elements2,3 and to take actions for preserving 
the services. Information retrieved by commonly 
used power monitors can be combined with 
monitoring information accessible through 
emerging transponders based on coherent 
detection4. In particular, such transponders offer 
the possibility to monitor several parameters 
associated to connections or to the traversed 
links: e.g. pre-forward error correction bit error 
rate (pre-FEC BER) or linear dispersion. 
In this paper, we study the effects on Quality of 
Transmission (QoT) monitoring parameters of 
several failures on the optical layer, specifically 
those of tight filtering and inter-channel 
interference; collected QoT monitoring 
parameters include received power (PRx) and 
pre-FEC BER. We propose an algorithm that 
analyses monitoring time series and, based on 
the expected patterns for the considered failure 
causes obtained in our experiments, localizes 
and identifies the most probable cause of failure 
at the optical layer affecting a given service. 
Failure Identification/Localization 
For illustrative purposes, Fig. 1 presents 
monitoring data series for the possible causes of 
failure affecting a given optical connection. Tight 
filtering happens when a too much narrow filter 
configuration distorts the signal. Such effect may 
become even more relevant when the signal 
drifts (e.g. due to a laser drift) toward the rising 
edge of the filter5. 
As it will be shown in the experimental 
demonstration, in case of laser drift, PRx  
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Fig. 1. BER and PRx monitoring time series for the 
considered failures. 

decreases because of the filtered power and 
BER is degraded; in fact periods with degraded 
BER are followed by others with normal BER, 
which makes difficult to localize the failure 
cause. In fact, BER degradation is not always 
caused by PRx decrease, as shown in the inter-
channel interference example, where the 
allocation of a neighboring lightpath results in a 
sudden increment observed in the target 
lightpath. Hence, failure localization entails deep 
analysis of monitoring data from several 
lightpaths. 
Proposed Algorithm 
With the above in mind, we propose a 
probabilistic failure localization algorithm based 
on Bayesian Networks (BN)6. A BN is a directed 
acyclic graph where nodes represent features 
and edges the conditional dependency between 
a pair of features. Each node is associated to a 
probability function that takes values from the 
parent nodes and returns the probability of the 
feature represented by the node. 
The proposed BN is trained to locate different 
causes of failures and returns its probability. 
Before training, several experimental tests for 
each of the possible causes of failure, as well as 
for the no failure case, need to be carried out to 
obtain monitoring data series similar to the ones 
in Fig. 1. Then, those data series are 
transformed into relevant descriptive features 
collecting the main characteristics of data series, 
such as minimum, maximum, average, trend,  
 



Table 1. Failure Localization Algorithm 
INPUT: s, BN 
OUT: A 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

P←getLightpaths(s) 
A←Ø 
for each p in P do 

H←getMonitorDataSeries(p) 
F←BN.computeFeatures(H) 
F’←BN.discretize(F) 
D←BN.predict(F’) 
A.p←sortProblemList(D) 

return A 
stepped change presence and 
size, etc. Since BNs require 
categorical features (i.e. with a 
finite range of levels), continuous 
features can be easily discretized  
 

X1

X2 X3

X4
X5

X6
X7

X4-X5

X5-X6

X6-X7

p

p1

p2

p

p2

p2

p2

p

PSC LSP id#

R1

R2

R3

p2

p2

p2

t

BER

t

BER

PRx

t

PRx

t

Fig. 2. Example of failure localization caused by inter-channel interference.
 

by applying a clustering algorithm to find the 
number and ranges of each of the levels. The 
type of failure is also added as response 
feature. The proposed algorithm that integrates 
the BN (Table 1) receives as input the affected 
service connection s and the previously trained 
BN. After retrieving the set P of lightpaths 
supporting s from the operational database (line 
1 in Table 1), every single lightpath is 
sequentially processed as follows: first, the 
available BER and PRx monitoring data series 
are retrieved from the monitoring repository in 
the form of variable-length time series of 
continuous data (line 4). Then, continuous 
features are computed and transformed into 
categorical values (lines 5-6). The prediction D 
returns, for each of the failures, the probability 
that it actually occurs (line 7). Such probabilities 
allow sorting the list of failures for every single 
lightpath, which is returned (lines 8-9). 
Fig. 2 shows an example of the proposed failure 
localization algorithm. Let us imagine that a 
service using a connection between R1 and R3 
has detected and notified service degradation to 
the service provider. The monitoring data of the 
two lightpaths supporting the service connection 
are analyzed. As observed, p1 monitoring data 
series show an almost constant trend for both 
power and BER, whereas p2 BER suffered a 
steeped increase at some point in the past. 
From this available data, the failure localization 
algorithm returns no failure with probability 95% 
for p1 and identifies interference with 70% and 
tight filtering with 25% for p2. 
According to the probabilities above, the scope 
of network reconfiguration is firstly focused on 
p2 and those lightpaths sharing an optical link in 
the route of p2. A deeper analysis identifies that 
p2 BER increment is correlated with lightpath p 
set-up. Therefore, by slightly shifting p in the 
spectrum away from p2, its BER should be 
improved and the detected service degradation 
eventually reduced. However, a monitoring 
period after reconfiguration is needed to verify 

that BER degradation has been completely 
solved. In the case that p2 BER has not reduced 
to normal values after p2 shifting, the second 
action in the list is taken, which might consists in 
making filters wider to overcome the probable 
tight filtering failure. With this second 
reconfiguration step, the service degradation 
should be finally solved. 
Experimental demonstration 
We demonstrated the effectiveness of the 
proposed algorithm by exploiting monitoring 
information retrieved by the experimental 
testbed shown in Fig. 3. A Nyquist wavelength 
division multiplexing (NWDM) signal is 
assumed. In particular a digital-to-analog 
converter (DAC) is used to periodically output 
pulse shaped electrical signals which drove the 
Mach Zehnder based IQ-modulators. A root 
raised cosine (RRC) with a roll-off of 0.2 and a 
bandwidth of 15 GHz is used to confine signal 
bandwidth. Two single polarization IQ-
modulators are used to modulate two external 
cavity lasers (ECL) and generate two quadrature 
phase-shift keying (QPSK) at a gross baud rate 
of 30 Gbaud (i.e. 60 Gb/s gross bit rate). Next, 
the bit rate is doubled by a polarization multiplex 
emulation stage, thus obtaining two 120 Gb/s 
polarization multiplexed (PM)-QPSK signals. 
The two modulated lasers are then multiplexed 
by means of a spectrum selective switch (SSS) 
configured to reserve a 37.5 GHz frequency slot 
for each channel. The signals are then 
transmitted through 60 km of standard optical 
fiber and the desired channel is optically filtered, 
pre-amplified and received exploiting coherent 
detection. The bandwidth of the optical filter at 
the receiver is set to 25 GHz (which correspond 
to around ten switch&select nodes, according to  
 

 
Fig. 3. Data plane experimental testbed 
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Fig. 4. Experimental results for the normal conditions and considered failures Fig. 5. Experimental BER and PRx
 

simulations we performed) in order to emulate 
the filtering effect of multiple 37.5 GHz filters. 
Two experiments are carried out. Measurements 
are reported for signal 1. First, filtering effects 
are assumed upon signal 1 drift. Second, inter-
channel interference is induced, assuming the 
laser drift of signal 2. This way, the channel 
spacing among the signals decreases inducing 
an increase of interference. Spectrum related to 
signal 1 is reported in Fig. 4 for both 
experiments. Fig. 4a shows signal 1 spectrum 
under normal conditions. In Fig. 4b, such signal 
experiences a slight shift in frequency due to the 
laser drift, while in Fig. 4c part of signal 2 falls 
within the bandwidth of signal 1. 
Fig. 5 reports BER and differential PRx 
measurements for both experiments (i.e. the 
difference between the received power and the 
received power in normal conditions). It is worth 
noting the differences between these plots and 
those in Fig. 1, where historical time series are 
plotted. Considering inter-channel interference, 
BER increases when the channel spacing 
between signal 1 and 2 decreases, while PRx 
increases when channel spacing decreases. 
This is due to the fact that part of signal 2 enters 
in the signal 1 bandwidth. 
Assuming tight filtering, a similar behaviour on 
the BER is experienced. Indeed, BER increases 
with the laser drift since the impact of filtering 
effects becomes more relevant. The behaviour 
of the power with respect to the inter-channel 
interference case is different. Indeed, received 
power decreases while the laser drift increases 
since part of the power is cut by the filter. The 
different behaviours of PRx may drive the 
decision to discern between inter-channel 
interference and excessive filtering effects 
because laser drift. This is considered by the 
proposed decision algorithm. 
According to the experimental values in Fig. 5, 
we generated synthetic monitoring time series 
for the normal signal and the considered failure 
cases. A set of 5,000 randomly generated time 
series were first used to train the BN and next,  
 

Table 2. BN Goodness-of-Fit 

 Real 

Normal Filtering Interference 

Pre-
diction 

Normal 99.2% 0.08% 0% 

Filtering 0% 100% 0% 

Interference 0% 0% 100% 
 

500 additional ones used for testing. Table 2 
reports the obtained goodness-of-fit computed 
as the probability that the BN predicts the actual 
failure cause as the first option. Note that only 
0.8% error was observed in some tests where a 
normal signal was predicted instead of a tight 
filtering failure. In such cases, the second most 
probable cause of failure was tight filtering 
failure. This demonstrates the validity of the 
proposed procedure and BN to localize and 
identify failures in the optical layer. 
Conclusions 
Two different failure causes at the optical layer 
have been experimentally characterized and the 
obtained measurements used to generate time 
series to train a BN. When a service detects 
excessive errors, an algorithm uses the trained 
BN to localize and identify the most probable 
cause of the errors at the optical layer. Results 
showed the effectiveness of the algorithm. 
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